Autumn Term- Year 6

Unit 1
 Calculating using known structures
 Pupils explain how a combination of different parts can be equivalent to the

 same whole and can represent this in an expressionPupils identify structures within stories and use their knowledge of structures to create stories
Pupils identify the missing part using their knowledge of part whole relationships and structures
Pupils interpret and represent a part-whole problem with 3 addends using a model
Pupils create stories to correctly match a structure presented in a model Pupils use their knowledge of additive structures to solve problems Pupils calculate the value of a missing part (1)
Pupils calculate the value of a missing part (2)
Pupils correctly represent an equation in a part-whole model
Pupils explain how adjusting both addends affects the sum (2 digit numbers) Pupils explain how adjusting both addends affects the sum (decimal fractions) Pupils use the 'same sum' rule to balance equations
Pupils use the 'same sum' rule to balance equations with an unknown Pupils explain how adjusting one addend affects the sum
Pupils solve addition calculations mentally by using known facts
Pupils solve calculations with missing addends
Pupils explain how adjusting both the minuend and subtrahend by the same amount affects the difference
Pupils explain how using the 'same difference' rule can make mental calculation easier (1)
Pupils explain how using the 'same difference' rule can make written calculation easier (2)
Pupils use the 'same difference' rule to balance equations
Pupils explain how increasing or decreasing the minuend affects the difference (1)

Pupils explain how increasing or decreasing the minuend affects the difference (2)

Pupils solve subtraction calculations mentally by using known facts
Pupils explain how adjusting the minuend can make mental calculation easier Pupils explain how adjusting the subtrahend affects the difference Pupils explain how increasing or decreasing the subtrahend affects the difference
Pupils calculate the difference using their knowledge of an adjusted subtrahend (1)
Pupils calculate the difference using their knowledge of an adjusted subtrahend (2)

Week 4	Week 5
Unit 2	
年	

Multiples of 1,000

Pupils explain how ten thousand can be composed
Pupils explain how one hundred thousand can be composed Pupils read and write numbers up to one million (1) Pupils read and write numbers up to one million (2) Pupils identify and place the position of five-digit multiple of one thousand numbers, on a marked, but unlabelled number line
Pupils identify and place the position of six-digit multiple of one thousand numbers, on a marked, but unlabelled number line
Pupils count forwards and backwards in steps of powers of 10, from any multiple of 1,000
Pupils explain that 10,000 is composed of $5,000 \mathrm{~s} 2,500$ s and 2,000 s Pupils explain that 100,000 is composed of 50,000 s 25,000 s and 20,000 s Pupils read scales in graphing and measures contexts, by using their knowledge of the composition of 10,000 and 100,000

Week 6 Week 7 ${ }^{2}$ Week 8
Unit 3

Numbers up to 10,000,000

Pupils use representations to identify and explain patterns in powers of 10
Pupils compose seven or eight-digit numbers using common intervals Pupils use their knowledge of the composition of up to eight-digit numbers to solve problems
Pupils explain how to read numbers with up to seven digits efficiently Pupils recognise and create numbers that contain place-holding zeroes Pupils determine the value of digits in numbers up to tens of millions Pupils explain how to compare up to eight-digit numbers
Pupils use their knowledge of the composition of seven-digit numbers to solve problems
Pupils add and subtract mentally without bridging a boundary (only one and more than one digit changes)
Pupils add numbers whilst crossing the millions boundary Pupils subtract numbers whilst crossing the millions boundary (multiples of 100,000 and different powers of 10)
Pupils explain how a seven-digit number can be composed and decomposed into parts
Pupils identify and explain a pattern in a counting sequence
Pupils identify numbers with up to seven digits on marked number lines
Pupils estimate the value and position of numbers on unmarked or partially marked number lines
Pupils explain why we round and how to round seven-digit numbers to the nearest million
Pupils explain how to round seven-digit numbers to the nearest hundred thousand
Pupils explain how to round up to seven-digit numbers to any power of 10 in context
Pupils identify and explain the most efficient way to solve a calculation Pupils add and subtract numbers with up to seven digits using column addition and subtraction
Pupils explore and explain different written and mental strategies to solving addition and subtraction problems
Pupils solve addition and subtraction problems and explain whether a mental or written strategy would be most efficient

Week 10

Week 11

Unit 5

Multiplication and Division

Pupils explain why the product stays the same when one factor is doubled and the other is halved
Pupils explain the effect on the product when scaling the factors by the same amount
Pupils use their knowledge of equivalence when scaling factors to solve problems
Pupils explain the effect on the quotient when scaling the dividend and divisor by 10
Pupils explain the effect on the quotient when scaling the dividend and divisor by the same amount
Pupils explain how to multiply a three-digit by a two-digit number
Pupils explain how to accurately use the method of long multiplication to multiply two, two-digit numbers (no regrouping of ones to tens)
Pupils explain how to accurately use the method of long multiplication (with egrouping of ones to tens)
Pupils explain how to accurately use the method of long multiplication (with regrouping of ones to tens \& tens to hundreds)
Pupils explain how to accurately use the method of long multiplication to multiply a three-digit by a two-digit number
Pupils explain how to accurately use the method of long multiplication to multiply a four-digit by a two-digit number
Pupils explain how to use the associative law to multiply efficiently
Pupils explain when it is more efficient to use long multiplication or factorising to multiply by two-digit numbers
Pupils explain how to use accurately the methods of short and long division (two and three-digit number by multiples of 10)
Pupils explain how to use accurately the method of long division with and without remainders (two-digit by two-digit numbers)
Pupils use knowledge of long division to solve problems in a range of contexts with and without remainders)
Pupils explain how to use a ratio chart to solve efficiently: short division Pupils explain how to use a ratio chart to solve efficiently: long division Pupils explain how to use a ratio chart to solve efficiently: long division (II) Pupils explain how to use accurately the method of long division with and without remainders (three-digit by two-digit, four-digit by two-digit numbers) Pupils use long division with decimal remainders (1 decimal place)
Pupils use long division with fraction remainders
Pupils use long division with decimal remainders (2 decimal places)
Pupils use knowledge of the best way to interpret and represent remainders from a range of division contexts
Pupils explain how and why a product changes when a factor change multiplicatively
Pupils use their knowledge of multiplicative change to solve problems
efficiently (multiplication)
Pupils explain how and why a quotient changes when a dividend changes multiplicatively (increase or decrease)
Pupils explain how and why a quotient changes when a divisor changes multiplicatively
Pupils identify and explain the relationship between divisors and quotients

Week 13

Unit 4

Draw, compose and decompose shapes

Use knowledge of shape properties to draw, sketch and identify shapes
The same 3D shape can be composed from different 2D nets When a 2 D shape is decomposed and the parts rearranged, the area remains the same. The area of a compound shape is therefore equal to the total of the areas of the constituent parts
Any parallelogram can be decomposed and the parts rearranged to form a rectangular parallelogram
Two congruent triangles can be composed to form a parallelogram
Shapes with the same area can have different perimeters. Shapes with the same perimeters can have different areas We can use the relationship between area and side length, and perimeter and side length, to reason about measurements of shapes, including compound shapes

Week 14 Week 15

Unit 6

Area and Perimeter

Pupils explain how to calculate the area of a parallelogram
Pupils explain how to calculate the area of a triangle
Pupils explain why shapes can have the same perimeters but different areas
Pupils explain why shapes can have the same areas but different perimeters
Pupils describe the relationship between scale factors and side lengths of two shapes
Pupils describe the relationship between scale factors and perimeters of two shapes
Pupils describe positions on the full coordinate grid (all four quadrants)
Pupils draw and translate simple shapes on the coordinate plane and reflect them in the axes

Spring Term- Year 6

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8

Fractions and Percentages

Pupils explain how to write a fraction in its simplest form
Pupils reason and apply their knowledge of how to write a fraction in its simplest form
Pupils use their knowledge of how to write a fraction in its simplest form when solving addition and subtraction problems (1)
Pupils use their knowledge of how to write a fraction in its simplest form when solving addition and subtraction problems (2)
Pupils use their knowledge of how to write a fraction in its simplest form when solving multiplication problems
Pupils explain, using an image, how to add related fractions (unit fractions)
Pupils explain what is meant by 'related fractions'
Pupils explain, without using an image, how to add related fractions
Pupils use their knowledge of adding related fractions to solve problems in a range of contexts
Pupils explain, with and without using an image, how to subtract related fractions (unit fractions)
Pupils use their knowledge of adding and subtracting related fractions to solve problems in a range of contexts
Pupils explain, with and without using an image, how to add and subtract related fractions (non-unit fractions)
Pupils explain, with and without using an image, how to add and subtract related fractions (non-unit fractions that bridge the whole)
Pupils use their fraction sense to fraction addition, subtraction and comparison
Pupils explain how to add or subtract non-related fractions with different denominators
Pupils use their knowledge of adding or subtracting non-related fractions with different denominators to solve problems in a range of contexts (non related fractions)
Pupils explain how to compare pairs of non-related fractions (converting to common denominators)
Pupils explain how to compare pairs of non-related fractions (using fraction sense)
Pupils explain how to compare pairs of non-related fractions (using common numerators)
Pupils explain which method for comparing non-related fractions is most efficient
Pupils explain how to multiply two unit fractions
Pupils explain how to multiply two non-unit fractions
Pupils explain how to divide a unit fraction by a whole number
Pupils explain how to divide a non-unit fraction by a whole number
Pupils explain when and how to divide efficiently a fraction by a whole number
Pupils explain what percent means
Pupils explain how to represent a percentage in different ways
Pupils explain how to convert percentages to decimals and fractions (with a denominator of 100)
Pupils explain how to convert a percentage to a fraction (without denominator of 100)
Pupils use their knowledge of fraction-decimal-percentage conversions to solve conversion problems in a range of contexts
Pupils use their knowledge of calculating $50 \%, 10 \%$ and 1% of a number to solve problems in a range of contexts
Pupils use their knowledge of calculating common percentages of a number to solve problems in a range of contexts
Pupils use their knowledge of calculating any percentage of a number to solve problems in a range of contexts
Pupils explain how to solve problems where the percentage part and the size of the part is known and the whole is unknown
Pupils explain how to solve problems where the known percentage part and the size of the part changes the whole

Unit 9

Ratio and Proportion

Pupils describe the relationship between two factors (in a ratio context)
Pupils explain how to use multiplication and division to calculate unknown values (two variables)
Pupils explain how to use multiplication and division to calculate unknown values (three variables)
Pupils explain how to use a ratio grid to calculate unknown values
Pupils explain how to use multiplication to solve correspondence problems
Pupils explain how and why scaling is used to make and interpret maps
Pupils will use their knowledge of multiplication and division to solve scaling problems in a range of contexts Pupils identify and describe the relationship between two shapes using scale factors (squares)
Pupils identify and describe the relationship between two shapes using scale factors and ratios (regular polygons) Pupils identify and describe the relationship between two shapes using scale factors and ratios (irregular polygons)

Unit 8

Pupils should be taught to interpret and construct pie charts and line graphs and use these to solve problems

National curriculum notes

 and guidance (non-statutory):
Pupils connect their work on angles, fractions and percentages to the interpretation of pie charts. Pupils both encounter and draw graphs relating two variables, arising from their wn enquiry and in other subjects. They should connect conversion from kilometres to miles in measurement to its graphical representation.

Week 10
Week 11
Unit 12
Order of operations
Pupils explain how addition and subtraction can help to solve multiplication problems efficiently (I)
Pupils explain how addition and subtraction can help to solve multiplication problems efficiently (II)
Pupils explain how the distributive law applies to multiplication expressions with a common factor (addition)
Pupils use their knowledge of the distributive law to solve equations including multiplication, addition and subtraction
Pupils explain how addition and subtraction can help to solve division problems efficiently
Pupils explain how the distributive law applies to division expressions with a common divisor (addition)
Pupils explain how the distributive law applies to division expressions with a common divisor (subtraction)
Pupils use their knowledge of the distributive law to solve equations including division, addition and subtraction

Week 13

Summer Term- Year 5

Year 6 Yearly Overview
(Linked to NCETM Curriculum Prioritisation Materials)

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15
Autumn	NCETM Unit 1 Calculating using knowledge of structures (1)			NCETM Unit 2 Multiples of 1,000		NCETM Unit 3 Numbers up to 10,000,000				NCETM Unit 5 Multiplication and Division			NCETM Unit 4 Shape		
Spring	$\frac{\text { NCETM }}{\underline{\text { Unit } 7}}$ Fractions and Percentages						NCETM Unit 9 Ratio and Proportion			NCETM Unit 12Order of operations					
Summer	NCETM Unit 13 Mean Average	KS Prep Cons and pr	Tests ration: idation fluency ctice	$\begin{aligned} & \text { KS2 } \\ & \text { Tests } \end{aligned}$	$\begin{array}{r} \text { NCE } \\ \text { Calcu } \\ \text { using } \\ \text { structu } \end{array}$	10 ating nown es (2)	NCE Uni Solvi Problem two unk	TM 11 ng s with nowns			Revisit Fr Decima Percen				

Notes:
'Constructing and presenting data’ is not covered by the prioritisation materials and ideally can be addressed in the foundation subjects in a relevant context such as

