CALCULATION POLICY: ADDITION AND SUBTRACTION

Mental calculation strategies for addition and subtraction:

All these mental calculation strategies are taught explicitly using a Concrete - Pictorial - Abstract (CPA) approach in every year group, for example, extending to decimals in upper Key Stage 2.

$70+30=100$

Bridging: $7+5=$

To begin: $7+3=10$ Then: $10+2=12$

Bridging through 60 for time, i.e. 70 minutes = 1 hour and 10 minutes.

Bridging through decimals

Add decimals using knowledge of doubles e.g. $0.8+0.8=1.6$ Adjusting: $16+9=25$

To begin: $16+10=26$

Then: $26-1=25$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Partitioning: $14+12=26$

Add decimals using partitioning e.g. $1.4+1.2=2.0+0.6=2.6$

Reordering: $8+7+2=17$
e.g. calculating numbers in a different order To begin: $8+2=10$ Then: $10+7=17$

Reorder increasingly complex calculations
e.g. $1.7+2.8+0.3=1.7+0.3+2.8$ or $4.7+5.6-0.7$...
$4.7-0.7+5.6=4+5.6$.

e.g. $0.8+0.35=0.8+0.2+0.15$			

ADDITION

Key Language:

sum, total, part, whole, add, plus, altogether, more, is equal to, is the same as

Next Review: May 2026

(using ten frames and counters/cubes or using Numicon)		
TO + O using base 10 Continue to develop understanding of partitioning and place value. $41+8$	Children represent base 10 using lines for tens and dots for ones.	$41+8$ $\begin{aligned} & \begin{array}{l} 1+8=9 \\ 40+9=49 \end{array}+\frac{48}{49} \end{aligned}$
TO + TO using base 10 Continue to develop understanding of place value. $36+25$	Children represent the base 10 in a place value chart.	Looking for ways to make 10. $36+25=$ Column Method Expanded: Compact:
HTO + TO, HTO+HTO etc When there are 10 ones in the 1 s column, we exchange for 1 ten. When there are 10 tens in the 10 s column, we exchange for 1 hundred.$243+368$$100 s$ $10 s$ 1s 00 0000 000 000 0000 08 08	Children represent the counters in a place value chart, circling when they make an exchange	

Next Review: May 2026

Mental calculation strategies for multiplication and division:

Doubling and halving:

Double six is $12 \ldots \quad$ Double five is ten...

Double 16 can be calculated by working out...

Knowing multiplication and division facts to 12×12 :

Arrays:

Number lines

Scaling:

Multiplying a teen number by one-digit number:

MULTIPLICATION

Key Language:

double, lots of, groups of, times, equal groups, array, repeated addition, multiplied by, product of, commutative, grid
Repeated addition/Repeated Grouping
$4+4+4$
3×4

There are 3 equal
Children represent the concrete resources in a picture or a bar model.

DIVISION

Key Language:

share, group, divide, equally, divided by, half, halve, remainder

Division with remainders

Using counters, lollipop sticks or other materials
$13 \div 4=$

\square

Twelve is the largest multiple of four that is less

 than or equal to thirteen.'Represent grouping counters or other materials

Short Division (No remainder)

$84 \div 4=$
Sharing

Using place value counters

\qquad
$\begin{array}{rrr}2 & 1 & 8 \text { tens } \div 4=2 \text { tens } \\ 4 & 8 & 4\end{array}$

8 tens $\div 4=2$ tens
4 ones $\div 4=1$ one

Short Division with remainder

Step 4 - sharing the ones

Dividing by 2-digits with remainder: Long division
$354 \div 15=$
Remainders should be rounded as appropriate to the context.

In some cases, the decimal and proper fraction remainder are both appropriate.

$\begin{array}{rlll} 2 & 3 & r 9 \\ 1 5 \longdiv { 3 } & 5 & 4 & \\ 3 & 0 & \\ \hline 5 & 4 & \\ 4 & 5 & \\ & & 9 \end{array}$	$\begin{array}{rlr} 1 5 \longdiv { 3 } & 3 & \frac{9}{15} \\ 3 & 5 & 4 \\ 3 & 0 & \\ \hline 5 & 4 \\ 4 & 5 \end{array}$	$\left.\begin{array}{rrr} & 2 & 3.6 \\ 1 5 \longdiv { 3 } & 5 & 4.0 \\ 3 & 0 & \\ \hline & 5 & 4 \\ & 4 & 5 \\ & & 9 \end{array}\right)$
So, $354 \div 15=23 \mathrm{r} 9$	$\frac{9}{15}=\frac{3}{5}$ So, $354 \div 15=23 \frac{3}{5}$	So, $354 \div 15=23.6$

(ifif) Calculation Policy: Guidance

Many of the representations in this policy have been taken from the NCETM Primary Mastery Materials and from the White Rose Maths Calculation policy. As some calculation methods are applicable to more than one year group, this policy instead details the progression in calculation skills and representations. The table below highlights where methods fit with the requirements of the National Curriculum.

	EYFS/ Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining 2 parts to make a whole. Counting on using number lines. Regrouping to make 10.	TO + O using base 10 TO + TO using base 10	Using base 10 and place value counters (up to 3-digits). Column method Regrouping	Using base 10 and place value counters (up to 4-digits). Column method Regrouping	Column method Regrouping Adding decimals using place value counters.	Column method Abstract methods Adding decimals
Subtraction	Taking away ones Counting back Finding the difference	Counting back Finding the difference Bridging 10 TO - TO using base 10	Column method with exchange using base 10. Column Method using place value counters (up to 3digits).	Column method with exchange (up to 4-digits).	Column method Abstract method for whole numbers. Begin to subtract decimals using place value counters.	Column Method Abstract methods Subtract decimals
Multiplication	Repeated addition/Repeated grouping. Number lines to show repeated groups.	Arrays (to illustrate commutativity).	TO x O using arrays and partitioning with concrete materials. 2-digit x 1-digit using base 10, Numicon	Column multiplication -introduce with base 10 /place value counters. 2-and 3-digit x 1digit	Column multiplication Abstract (but begin with Year 4 methods if needed) Up to 4-digit x 1 or 2 digits	Column multiplication Abstract methods

Next Review: May 2026

Division | Sharing using a range |
| :--- |
| of objects. |

Repeated subtraction
(equal groups).
Sharing using place
value counters or
base 10.

Division with a
remainder - using
concrete materials value counters or base 10.

Division with a remainder - using concrete materials.

Short division - no remainder.

Short division with remainder (up to 3digit by 1- digit concrete and pictorial).

Short division with remainder (up to 4digit by 1- digit).

Short division

Long division dividing by 2-digits, including remainders.

